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Abstract

Japanese Optical Character Recognition is still a devel-
oping field. Standard methods developed for the Latin al-
phabet do not perform well with Japanese, due to Japanese
having many more characters: about 2,800 common char-
acters out of a total set of more than 50,000. Each Japanese
character is, on average, more complicated than an English
letter. This paper introduces a character recognition system
for Japanese combining standard image segmentation and
classification techniques with large, state-of-the-art feature
sets. Our system performs well across two tests, one that
validates the algorithms success at identifying high quality
images of characters in a variety of fonts and an experiment
in extracting characters from a raw scan of a Japanese doc-
ument.

The system developed in this paper uses advanced fea-
ture representations and provides excellent results, despite
having an extremely limited number of training points for
each character. We believe that this system will only im-
prove with more data points and is capable of recognizing
both typeset and handwritten characters across many Asian
languages beyond just Japanese.

1. Introduction
Provide a concise statement of the problem youre tack-

ling and the solution youre implementing. Discuss the
scope of the technical work (sub component development
vs. exhaustive experimental validation of existing algo-
rithms). Discuss how it relates to the literature. Provide
a brief outline of the papers content and sections.

We have developed a software system for recogniz-
ing Japanese characters from images. The challenge of
Japanese OCR is in its huge number of characters. The
sheer number of characters hints at the fact that each
Japanese character is, by definition, much more complex
than an English character. There are three different alpha-
bets in Japanese, but for this problem, we can treat all char-
acters as members of the same superset. The ultimate goal
of any OCR system is to recognize handwritten characters.

Training a recognizer across some 2,000 different classes
is an extremely daunting challenge and requires significant
feature engineering to create a large enough feature space
to isolate a character.

Even for one character, there is a significant amount of
variation between fonts, just like English. These types are
differences are accentuated by the larger number of strokes
per character. Consider the character (meaning to har-
vest) in several of the fonts used in our training set. In
some fonts, the strokes connect, but in others, they do not.
These changes exaggerate the ambiguity within characters
and make classification especially difficult.

For those unfamiliar with the Japanese language and its
textual structure, each character is called a kanji. Kanji
themselves are made up of bushu (called “radicals” in En-
glish) and a word is made of potentially multiple kanji.
There are no spaces in Japanese to separate words. The
process of splitting Japanese characters into words remains
an unsolved problem and is outside the realm of this class.

Our solution has a two-phase approach. The first step of
is image segmentation. Our segmentation in well-formed
documents is fairly simple, where we use a simple heuristic,
which is sufficient for the task of extraction of text that is
typewritten and scanned. An interesting area of future work
will be the extract of text from non-document images, like
road signs, colorful menus, or even sports jerseys. Once
weve segmented one character from the image, we can use
our feature extractor and a Naive Bayes predictor to identify
the character. We have a large feature space, which is a
necessity to distinguish across the few thousand different
characters. The most important contribution of this paper
is its implementation and discussion of features and how
they affect the success of a machine learning classifier. The
classifier presented here outperforms a commercial, online
Japanese OCR tool for certain fonts and we believe it would
outperform it on all fonts, given enough training data.

2. Previous Work
There is a surprisingly small amount of literature in En-

glish focusing specifically on on Japanese OCR methods.
More research exists in Chinese fonts, but given that the
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Figure 1. The character for “to harvest” across many fonts.

two languages share many characters, we believe that the
lessons from one language can be shared with the other. In
fact, the alphabets of several east Asian languages (these
two and also Korean and Vietnamese) stem originally from
the Chinese language.

One invaluable resource was Fumitaka Kimuras paper
OCR Technologies for Machine Printed and Hand Printed
Japanese Text. This paper provides a broad survey of avail-
able preprocessing and feature-extraction techniques that
are used in modern systems. Kimura introduces several
important preprocessing steps that we leverage in our sys-
tem. Kimura provides the reasoning and mathematical basis
for skew-correction and outlines a simplistic algorithm for
line and character segmentation within well-formed docu-
ments. The algorithm Kimura introduces takes advantage
of Japanese being fixed pitch – almost every character in
Japanese is roughly the same size, as compared to English,
where a lowercase i is much narrower than an uppercase
W. Kimura also suggests an advanced skewing operation as
a preprocessing step before extracting features. Japanese
characters are more dense in the center than they are at the
edges. He applies a transformation akin to a fisheye lense:
expand the center of the image while decreasing the size of
the edges.

One of the most important features that increases accu-
racy for Chinese OCR comes from Xianli Wu and Min Wu
and their paper A Recognition Algorithm For Chinese Char-
acters In Diverse Fonts. In the paper, they introduce a new
feature called peripheral directional contributivity. Its im-
plementation is detailed below in Section 3.2.2. This was
the most powerful feature we found during our research.
The Wu and Wu paper trains different classifiers for each
font using the PDC feature. They then train and test on
the same font, which delivers excellent results – averag-
ing 98.6% accuracy across a test corpus of eight font faces.
While impressive, their algorithm is not tested on unseen
fonts, which limits its applicability to documents in gen-
eral. We attempt to improve upon their work by training
one classifier across all fonts, which eliminates the need to
know the font ahead of time.

3. Technical Solution
The problem reduces to three sub-problems. First, we

need to identify where in an image kanji appear and sepa-
rate those kanji into individual subimages. Next, we need to
classify that character by extracting its important features.
However, this is true of all OCR systems, not just Japanese.
What makes Japanese OCR more difficult is the large num-
ber of characters, as explained in the introduction. This
forces us to use a much broader selection of features, not
to mention using a larger quantity of them as well.

The approach outlined below is implemented in Python
using OpenCV as its image processing library, SciPy and
NumPy for sophisticated mathematical processing, and the
scikit-learn package for machine learning. By leveraging
a user-friendly language that easily calls into C and C++
functions, our solution is reasonably efficient while also al-
lowing for rapid development.
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Figure 2. Example of segmented kanji.

3.1. Segmentation

The heuristic used in image segmentation assumes that
lines of text are all oriented in the same direction. Fur-
thermore, it relies on the text being fixed-pitch, meaning
that each character is given close to the same space regard-
less of the size of the character itself. Segmentation is per-
formed on a binary version of the image: pixel values over
the threshold are black and those under the threshold are
white.

The segmentation process occurs in three steps. First, the
orientation of the image must be normalized so the kanji are
not rotated and each line of characters is strictly horizontal.
This is achieved by searching for the orientation that max-
imizes the horizontal whitespace between each line of text.
After the orientation is determined, an assumption is made
that there is whitespace between each line of text and that all
lines are oriented the same direction. The image is then cut
into lines delimited by whitespace in the vertical direction.

Finally, each line is processed so each character is seg-
mented so it can be classified with the minimum amount
of noise. To do this, we first need to estimate the pitch
of the line, as for a given line, each character is given ap-
proximately the same amount of horizontal space, regard-
less of the width of the character itself. To estimate, we
find the width of all characters in the line which are hori-
zontally contiguous and do not have white space separating
two halves of the character, discard the outliers, and then
average the width of the remaining characters. To then seg-
ment the line into characters, we find the column of pixel
values with the least black pixels closest to the estimated
cutting point determined by the pitch of the line.

3.2. Classification

Classification is the process where the candidate image is
compared against historically observed golden image-kanji
pairs in order to select a most likely kanji for the image in
question. Small candidate kanji images are cropped out of
the original documents image by the segmentation engine
and flow into the classifier.

The classifier has two distinct stages: first the training
step and then the classification stage. The system uses a
classic machine learning method: Gaussian Naive Bayes.
In developing this report, we experimented with several un-
derlying machine learning algorithms but settled on Naive

Bayes when it provided the best results on our test data.
In order to provide robust prediction across the many

thousands of characters, the system needs a very large fea-
ture space. In order to provide such a large feature space,
there are several different classes of features used, which are
all concatenated into one long vector for the Naive Bayes
training and classification procedures. A significant portion
of this project is based around excellent feature engineer-
ing, so included is a description of each feature vector that
is included as a part of the entire feature vector.

3.2.1 Preprocessing

Before entering the machine learning pipeline, all images
undergo a series of transformations in order to standard-
ize the input images across different fonts and documents.
First, we convert all images to binary, making the darkest
pixels the foreground main font and the background stan-
dard white pixels. Then, all the whitespace around the edge
of the image is cropped away, finding the tightest bounding
box possible for the character. This prevents the effects of
varying segmentation from causing irregularities when we
extract features. Finally, for some features, we normalize
the image into a 48-by-48 square. Normalizing to a small
square helps to accentuate the fundamental aspects of the
image and limit the effects that the font artists creativity can
overwhelm our features.

3.2.2 Peripheral Direction Contributivity

The most important and distinctive feature included in the
system is the PDC feature which was invented by Xianli Wu
and Min Wu in their paper for IEEE ICIP ’02 (Wu, Wu).
The PDC feature vector was designed to recognize Chinese
characters across a diverse group of fonts but generalizes
quite well to Japanese, whose alphabet shares many charac-
ters with that of Chinese.

As an introduction, it is important to realize that in
Japanese characters, the strokes occur primarily in the car-
dinal directions and along the diagonals. Features should
try to capture, in the smallest vector possible, the number
of strokes, the orientation of strokes, the location of the
strokes, and the length of the strokes. Implicit in those fea-
tures is also the intersection of the strokes in a character.
Each character is fundamentally defined by these types of
parameters.

The PDC feature vector attempts to capture these fea-
tures by first reducing each image to a 48 x 48 pixel square.
In this representation, a stroke can be anywhere from 1 to 5
pixels in width and can be up to 30 or 40 pixels long. PDC
searches through the image in all directions to identify the
length of strokes in that direction.

A PDC feature vector is built in the following way. After
scaling the image down or up, the program looks at each
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Figure 3. Construction of PDC feature vector.

row. For each row, the program scans across each row from
left to right and counts how many consecutive black pixels
are observed in each grouping of black pixels in that row.
The length of the first three black groupings is recorded.
The process is repeated for all rows, columns, and diagonals
in eight different directions: the compass directions and all
45-degree angles. The sixty-four three-tuples recorded for
each row or column (127 three-tuples for the diagonals) are
averaged into overlapping groups of four. Figure 3 (from
the Wu and Wu paper) demonstrates how pixels are counted
along the eastern direction and it is easy to identify the three
clusters of black pixels in that row.

3.2.3 ORB Features

Another important feature leveraged in the system is the
ORB feature, short for Oriented FAST and Rotated BRIEF).
It is extremely similar to the SIFT system and was invented
by the Willow Garage robot research lab. The authors of the
algorithm argue that it is an efficient alternative to SIFT or
SURF. Japanese characters are frequently written at a slant
that can vary between authors (in handwritten text) or be-
tween fonts (in typeset documents). By using a very effi-
cient system that compares favorably to a rotation-invariant
version of both FAST and BRIEF, our system gains more
insight into the fundamental keypoints of a given japanese
character representation. ORB is implemented in OpenCV
already, so we simply integrate it into the system.

The two similar feature systems that ORB aims to repro-
duce are FAST and BRIEF. FAST is a corner-detection algo-
rithm that uses gradients to efficiently find locations where
a sharp change in color forms a roughly concave shape.
BRIEF is based around a binary descriptor and also aims to
identify key points that fundamentally distinguish one im-
age from another.

Figure 4. ORB keypoints for a kanji.

3.2.4 Histogram of Oriented Gradients

Another significant feature is the histogram of oriented gra-
dients, which was used in CS231A earlier this quarter. As
a refresher, the HoG feature works by computing a dense
grid of uniform cells to find the direction and magnitude of
gradients per pixel. It then bins these gradients into a his-
togram and uses a rolling, overlapping average to compute
a histogram for each section of the image. Adding the HoG
gradient helps the machine learning algorithm gain a sense
of the edges and borders of an image. This is a great boon
to our system, as the edge positions of a Japanese character
are an excellent correspondence between two images of the
same character in different fonts.

Although a form of HoG is implemented in OpenCV,
we re-implemented the HoG algorithm to get further con-
trol of the histogram bin size and other hyperparameters.
Adding in the HoG vector to our overall feature vector was
extremely important in boosting the performance of the sys-
tem.

3.2.5 Center of Gravity

An important aspect to consider when looking at Japanese
characters is the amount of pixels distributed through differ-
ent parts of the image. Some kanji have extremely dense re-
gions and other non-dense regions. In order to capture that,
we calculate the pixel center of gravity for each quadrant of
the image, in addition to the overall center of gravity for the
character. The center of gravity is also called the center of
mass and is calculated by scipy using the location of each
black pixel in the quadrant. This feature was inspired by
Yichang Shi and Donglai Wei who have researched OCR
in Sanskrit and cite the center of gravity as an important
feature in their research.
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Figure 5. The center of gravity for the 4 quadrants of this character.

3.2.6 Global Features

A last feature vector we implemented was also suggested
by Shi and Weis work on Sanskrit. We have a few features
that look “globally” at the image, rather than splitting it up
into pieces to calculate a pixel-by-pixel factor like HoG or
PDC. This feature does not use the resized image, but rather
the original kanji extracted from the segment step. Each
global feature is a simple calculation that looks at the entire
image, rather than scanning across in bins like histograms of
oriented gradients or in rows like the peripheral directional
contributivity.

• The height-to-width ratio of the image image. This
helps to distinguish tall and skinny kanji from short
and fat characters.

• The center of mass across the entire image in the x-
direction. The center of mass along the x-axis sepa-
rates left-heavy from right-heavy kanji.

• The center of mass across the entire image in the y-
direction. Just like its x-axis sibling, this distinguishes
top-heavy from bottom-heavy characters in the dataset.

• The standard of deviation in black pixels across the x-
direction. The standard of deviation helps to illustrate
how tightly pixels are clumped in one section, poten-
tially representing the number of bushu in the kanji.

• The standard of deviation in black pixels across the y-
direction. This is justified the same as the x-axis stan-
dard of deviation feature. The larger the standard of
deviation, the more evenly spread the kanji is across
its entire width.

• The ratio of filled to empty pixels across the entire im-
age. This is an important feature that serves as a rough
proxy for how many strokes are in the image.

Standard Thick Thin Serif
93.2% 80.5% 84.% 35.0%

Table 1. The performance of the classifier in Experiment 1.

4. Experimental Setup & Results
4.1. Setup

We have two experiments: testing well-formed, identi-
cally generated images of each character from each font,
and testing our system in parsing an actual document. The
two tests have the first half of the setup in common, they
both are trained from the same training data.

To generate the training data, for each font we generate
a png file for each character in the hiragana alphabet, the
katakana alphabet, and the Joyo subsection of Kanji. These
kanji are the 2,136 characters recognized by the Japanese
government as the most important kanji and the only kanji
that are permitted for use in official government documents.
Each character has an image generated in each of the 21
fonts.

4.2. Experiment 1

In this experiment, we train our Gaussian Naive Bayes
classifier over 20 of the 21 fonts and test each character
from the remaining font. Weve subdivided our list of fonts
into four categories called “Standard”, “Thick”, “Thin”, and
“Serifed”. To better understand the performance of our sys-
tem and the efficacy of our feature selection, we tested one
font from each category against the remaining 20 fonts.

4.3. Experiment 2

This experiment tests both our image segmentation and
subsequent classification of segmented kanji. We were un-
able to obtain a corpus of original handwritten Japanese text
or the digital transcriptions of text in images, as the only
one available in the US were prohibitively expensive and
corpuses from Japan would not have arrived here in time, as
they would have been physically shipped and could not be
transferred digitally. Our criteria then shifted to easily ac-
cessible, open source, and with a wide range of characters.
The first thing we found which fit this criteria was the Bible,
so we chose to test our system on images of pages from the
new Testament Book of Matthew.

For each page in Matthew, our system first segments in
the image into individual characters and then classifies it
using the classification system described above. After col-
lecting the output in a text file, we evaluate the success by
measuring the Levenshtein edit distance from the original
file. Edit distance is a measurement of how different two
pieces of text are, with a penalty for each missing, added,
or incorrect character.

To establish meaningful baseline results, we similarly
test against i2OCR.com, the only free online Japanese OCR
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Training all fonts Training one font i2OCR.com
703 199 502

Table 2. Levenshtein edit distance when testing a serif font.

Training all fonts Training one font i2OCR.com
703 199 502

Table 3. Levenshtein edit distance when testing a sans-serif font.

tool we found to perform with a significant degree of cor-
rectness (we tested other systems online and they all failed
to correctly classify a single character in the image). We
consider this the silver standard against which we can com-
pare our results: if our OCR tool works better than this web-
site, we consider it a success.

As a third measurement, we also test the image classifi-
cation after only training on the font used in the version of
Matthew. The purpose of this test is to determine the degree
of overfitting in our features and how effectively the clas-
sification engine is when considering a smaller version of
the same image (our training images are about 256 pixels
square, whereas the segmented images from the Bible are
about 75 pixels square, losing a lot of their detail).

4.4. Discussion: Segmentation

The segmentation used in this project worked very well
and was not a major contributing source of error. It was able
to successfully handle the cases where the character had a
wide horizontal gap in the middle, which a more standard
segmentation system would treat as separate characters.

4.5. Discussion: Serif vs. Sans-Serif

Even late into the project, it was not obvious that the
type of font mattered nor that the fonts could be divided
into obvious styles like serif and sans-serif. However, upon
inspection of our data, we realized this distinction had many
important implications.

In Experiment 1, the reasons for the discrepancy between
serif fonts and sans-serif fonts is quite clear, we not only
have fewer serif fonts than sans-serif fonts, but each serif
font has a unique style of serifs that provide more distinct
features than each sans-serif font. Each sans-serif font is
very similar to its san-serif cohort, which is not true for serif
fonts.

Our understanding of and explanation for the results in
Experiment 2 is more nuanced and far less obvious. First,
when only training on one image, we argue that for the sans-
serif font the system can find very few distinguishing fea-
tures for each character and overfits the data on the exact
training examples its sees. However, serif fonts are more
ornate and have more complex structure, which offers more
details for the classifier to grasp ahold to. When tested
against scaled-down versions of the same font, the ambigu-
ity of the sans-serif font is accentuated and the overfitting

severely degrades the performance, while the serif font still
has enough good features to be fairly accurate.

When training with all of the available fonts, the perfor-
mance improves for sans-serif and declines for serif fonts.
This is because the large number of sans-serif fonts helps
the classifier reduce overfitting and understand exactly what
makes up a character in its sans-serif representation. At the
same time, however, we lose track of what the serif fonts
look like: a leading factor causing this is most likely our
dearth of training serif fonts. The tested serif font, with its
more decorative flair, causes confusion for the classifier and
ultimately poor performance. Our belief is that this is due
to characters in serif fonts having more distinguishing fea-
tures. Said more simply, two characters in a sarif font will
appear less similar than in a sans-serif font. The lack of
good training data is a major factor in both Experiment 1
and Experiment 2.

5. Future Work
5.1. Selecting Training Data

Our first conclusion is very obvious: we need more fonts.
It is clear that training on such a limited set of fonts leads
to overfitting of training data and an unreliable classifier.
However, this might not be a feasible solution: there sim-
ply are not many fonts for Japanese characters. We instead
examine other possible solutions in light of our results.

Instead of training on all fonts, our data suggests that a
reasonable approach would be to first determine whether a
serif font or a sans-serif font is present in the document.
We can see that by selectively training over the proper class
of font can result far fewer errors. This step is reflected
in previous research, where training was always performed
over same font that is used in testing. [CITATION OF WU
AND WU]

5.2. Selecting Features

Given that we are only working with machine-printed
images that are normalized to 48x48 pixels, we did not ex-
pecting overfitting to be a large source of error. However,
our results show that the features present in an image that
has been normalized from 300x300 a pixel image differ sig-
nificantly from those present in an image that is generated
at 48x48 pixels. Future work should identify which features
are more critical given the size of the training set.

5.3. Handwriting

OCR on Japanese handwriting is an ongoing research
problem and we will briefly discuss some of the challenges
in implementing such a system, in light of our results.

The first major issue is the lack of accessible, sizeable
training corpuses. Even when working with typeset fonts,
we can see that a large training set is required to prevent
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overfitting. As handwriting has more variation than typed
fonts, this issue is compounded. However, there has not
been a major attempt to create large corpuses of handwriting
in Japanese.

The next issue is that our system in particular is not ex-
tendable to Japanese handwriting. Our feature selection
process requires strokes with widths of greater than 1 pixel
and which are oriented along the cardinal directions and the
major diagonals. However, in handwriting, there is no guar-
antee of the width of the strokes or that they will be perfectly
aligned.

Finally, our image segmentation, which currently en-
joys a success rate of over 99%, would likely not work in
handwritten Japanese. Because it cannot make cuts at any
whitespace, as that whitespace might occur in the middle of
a character, it relies on the fixed-pitch property of typeset
Japanese. However, this property does not hold in hand-
written Japanese, making image segmentation of handwrit-
ten Japanese a far more involved problem than in typeset
Japanese.

6. Conclusion
The Japanese OCR system presented in this report is

competitive with the free, online tool used for baseline re-
ports for some fonts. By leveraging a large feature space,
the system is able to correctly extract Japanese characters
from standard documents. Further research and testing op-
portunities directly extend from this paper, particularly in
the fields of handwriting recognition and training classifiers
on larger corpora of text.

7. Code
The code and data for this project is available at https:

//github.com/sloanesturz/cs231a-proj.
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